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ABSTRACT 

The present paper provides an overview of approaches used to estimate the maximum water surface elevation in 
reservoirs due to earthquake-induced sloshing. These correspond to predictions based on the complete closed-form 
solution to the linearized boundary value problem, the corresponding solution for first mode sloshing only, and the early 
solution of Housner. These three approaches are compared and an example application is provided. Finally, a brief 
indication is also provided of various additional factors which may require consideration, including the treatment of 
reservoirs with complex planforms; the influence of the direction of base motion; and the estimation of hydrodynamic 
damping. 

INTRODUCTION 

The prediction of the hydrodynamic loads and water surface elevations in water-filled reservoirs and tanks is an 
important requirement in structural design. The traditional approach to estimating these has been outlined, for example. 
by Housner (U.S. Atomic Energy Commission, 1963) and in the AWWA (1984) and API (1993) standards. In general. 
such estimates are based on the assumption that the influence of the second and higher sloshing modes is negligible. 
Loads are generally estimated by the use of an impulsive, or high frequency, effective fluid mass which accelerates with 
the container, together with an additional effective fluid mass which undergoes resonant motions at the lowest natural 
frequency of sloshing. 

In the case of elevation estimates, there is no term analogous to the impulsive force component, which is usually 
dominant, and therefore the effect of second and higher sloshing modes may not be negligible - particularly for large 
reservoirs for which the spectral acceleration may be quite low at the first mode natural period. Thus, several sloshing 
modes should be considered simultaneously. This may be done by applying an available closed-form solution of the 
corresponding linearized boundary value problem for a harmonic base motion extended to the case of earthquake-induced 
base motions. 

The present paper provides an overview of approaches used to estimate the maximum water surface elevation due to 
earthquake-induced sloshing. These correspond to predictions based on the complete closed-form solution, the 
corresponding solution for first mode sloshing only, and the early solution of Housner. These three approaches are 
compared. It is shown that the reliable estimation of the maximum surface elevation in a large reservoir requires the 
influence of higher sloshing modes to be taken into account. And, as expected, Housner's predictions correspond closely 
to those based on the closed-form solution for first mode excitation, but give predictions which are slightly higher. A 
brief indication is also provided of various additional factors which may require consideration, including the treatment of 
reservoirs with complex planforms; the influence of the direction of base motion; and the estimation of hydrodynamic 
damping. 

HARMONIC MOTION 

Figure 1 provides a definition sketch of a rectangular reservoir: a denotes the half length of the reservoir, b denotes 
the width, and h denotes the water depth. Initially, the closed-form solution for the water surface elevation is 
summarized, and this is subsequently extended to earthquake motions. The solution is obtained on the basis of 
assumptions that the reservoir is rigid, the fluid is incompressible and inviscid, and the oscillation amplitude is small 
(such that the corresponding boundary value problem is linearized). The solution provides a description of the 
corresponding fluid motion, and thereby provides an expression for the maximum water surface elevation. Although the 
solution was initially developed for the case of no energy dissipation, it is possible to extend the solution to the case of 
energy dissipation corresponding to a specified damping coefficient, by assuming this to occur at the free surface (e.g. 
Faltinsen, 1978, Isaacson and Subbiah, 1991). 
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The solution is expressed in terms of a set of eigenvalues an corresponding to each mode of sloshing. The 
eigenvalues correspond to cos(x n  ) = 0, and thus are given by: 

TE 3rc 5rc 
•an =— • —• •• 

2 2 2 
for n = 1. 2. 3, .. ( I ) 

The natural frequencies of each sloshing mode, denoted con  , may be obtained in terms of the a n  values from the 

equation: 

(On  = (la ri g/a )t an h(a n  hia) (2) 

where g is the gravitational constant. The corresponding natural periods are obtained from Tr, =2rc/co n  . 

Once an  and con  are known, an available expression for the water surface elevation may be used to determine the 
maximum surface elevation at the reservoir walls. If the base velocity is given in complex notation as u( t) = U exp(-iwt). 
where U is the velocity amplitude, to is the angular frequency, t is time. and i = 471 then the water surface elevation at 
x = a may be expressed as: 

iwUa "." 2 
tl =  1 G n exm— km) 

g n=1 a; 

where G n  (ico) is a frequency dependent function given as: 

co-  +iwo 
G n  (ico) = 

andµ is a damping parameter which can be related to the damping ratio C. 

It may readily be shown that Eq. 3 leads to tl —> 0 in the high frequency limit. This result is significant. since it implies 
that there is no term analogous to the impulsive mass used in force estimates. 

MODAL RESPONSE BASED ON EARTHQUAKE SPECTRUM 

In the case of a base motion due to an earthquake. the motion is generally described by a specified spectral acceleration 
Sa  (Tn  , C), which corresponds to the maximum acceleration arising in a lightly damped single degree of freedom system 
of natural period Tn  and damping ratio C and subject to a unit peak ground acceleration. The spectral acceleration for a 
maximum ground acceleration of 1.0g is generally approximated (e.g. National Building Code of Canada. 1985) in a 
simplified form: 

2 • 2 
+ 11.10) — n  

(3)  

(4)  
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for Tn  <131  

for 131  < Tn  < p 2  
for Tn  > a 2  

(5) 

where a1  , a 2 , a3  , p i  and 132  are constants which depend on the damping ratio C . [Subsequent editions of the code 

omit the long period component of Eq. 5, but this component is retained here as being of critical importance in the 
present context.] 

Estimates based on closed-form solution  

For such a motion, the maximum surface elevation ri n  associated with the n-th mode of sloshing may be derived 
from the closed-form solution for a harmonic motion and is given as: 

2a u m 
= Sa  (Tn  ,C) (6) 

ati g , 

where u M  is the maximum ground acceleration, and Sa  is dimensionless with respect to g. 
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The traditional approach to estimating maximum forces is based on the assumption that only the first sloshing mode 

is significant. Using this assumption, the maximum elevation T1l  is given by: 

• 
U m \ 

Sa(T1, C) 
g 

=0.811a (7) 

However, for a relatively large reservoir, the spectral acceleration may be quite low at the first mode natural period 
so that the effect of second and higher sloshing modes may not be negligible. [This differs from the case of force 
predictions, since there is now no term analogous to the impulsive force component.] In this case, several modes should 
be considered simultaneously, and a common practice to estimating the overall maximum elevation r1M  is based on the 

root of the squares of the maximum modal responses: 

N 1/2 

TIM =
L 
 Tln 
n=1 

(8) 

where ri n  is given by Eq. 6, and N is sufficiently large for convergence to occur. 

Housner's solution  

Housner (U.S. Atomic Energy Commission, 1963) has described an approximate method of solution for rectangular 
and circular reservoirs, in which the influence of the second and higher sloshing modes is ignored. His analysis gives the 
following expression for the maximum sloshing height in a rectangular reservoir: 

0.527 a 
11H = ( (9) 

tanh [1.58(h/a)] g 1 
\ e 0a 

where 0 can be expressed as 0 = (U m  /g) Sa  (T1 , C) and col  is given by Eq. 2 with ot i  taken as 1.58. 

It is noted that, although Housner's solution fails for high values of 0 and does not predict T1 4  to be proportional to 
base acceleration, for the practical case of low 0 values the expression for im may be approximated by Eq. 7, but with 
the factor 0.811 replaced by 0.833. Thus, Housner's formulae then gives predictions which are 3% higher than the 
closed-form solution for first mode sloshing. 

API and AWWA standards  

The API (1993) and AWWA (1984) standards refer to the use of Housner's approach to estimating the maximum 
sloshing height. Their predictions of the maximum surface elevation are given in terms of various constants (a zone 
coefficient, a structure coefficient, a site amplification factor and an earthquake coefficient corresponds to the application 
of an assumed form of earthquake response spectrum), but in effect correspond to Eq. 7 above. The two standards are 
similar, except that there are slight differences in the assumed values of the constants. However, it is noted that. as with 
Housner's expression, these predictions are based on the assumption that the second and higher sloshing modes may he 
ignored. 

RESULTS AND DISCUSSION 

Harmonic Excitation 

The solution for a harmonic excitation, Eq. 3, indicates that the dimensionless amplitude of the free surface elevation 

1'1 is a function of the dimensionless frequency co2a/g, the relative depth h/a, and the damping ratio C. Figure 2 shows 

the dimensionless amplitude of the free surface elevation at the wall x = a as a function of co2a/g for various values of 
damping ratio C and for h/a = 1. The figure clearly shows the large elevation amplitudes at the lower sloshing modes 
corresponding to wn a/g = 1.57, 4.85 and 8.10 for n = 1, 2, 3. 
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Earthquake Excitation  

For the case of earthquake motions, it is of interest to compare the complete closed-form solution with that for first 
mode sloshing and with Housner's solution. The comparison between Housner's solution, denoted ri H  . and the closed- 
form solution for first mode sloshing, tlt  , is conveniently presented as 11H . This depends on the reservoir size a. the 
relative depth h/a, the damping ratio C , and the maximum ground acceleration U m  /g. In all cases a damping ratio 

= 0.005 is assumed. Figure 3 shows this ratio for various values of h/a and for U m  /g = 0.1 (Fig. 3a). and for various 
values of U M  /g and for h/a = 1.0 (Fig. 3b). The figure indicates how Housner's solution becomes inaccurate relative to 
the first order solution for smaller reservoirs and for higher values of base acceleration. Figure 4 provides a comparison 
of the full closed-form solution and the closed-form solution for first mode sloshing. The ratio 11 m I  is shown as a 
function of reservoir size a for various values of h/a and for u M  /g = 0.1. As expected. the figure indicates that the first-
mode result underpredicts the results of the complete solution most significantly for larger reservoir sizes. This is most 
pronounced for relatively shallow large reservoirs. In particular. for the case h/a = 0.2 and for reservoir lengths 2a > 60 
m, the maximum elevation based on the complete solution is more than 50% higher than that based on first mode 
sloshing. 

Additional Factors 

Irregular planform. When the reservoir has a circular planform, the identical approach can be used. except that the a„ 
values are different ( a n  = 1.84, 5.33, 8.54 for n = 1. 2, 3). When a reservoir has an irregular planform that cannot 
readily be approximated as circular or rectangular, the numerical method described by Isaacson and Ryu (1998a) may he 
adopted. The approach used is based on an eigenfunction expansion of the velocity potential with respect to the vertical 
direction combined with a two-dimensional boundary element method with respect to the horizontal plane. with the 
planform of the reservoir discretized into a number of short segments. 

Effects of direction. In certain cases, it may be necessary to consider a reservoir motion which is uni-directional but not 
parallel to a pair of sides. A direction of motion which is oblique can be analyzed by an appropriate superposition of two 
component motions parallel to the two pairs of sides. This enables the known closed-form solution to he extended to the 
case of an oblique direction. Results for the case of an oblique direction given by Isaacson and Ryu (1998h) indicate that 
for earthquake motion, a direction of motion parallel to the shorter pair of sides always gives the highest loads and 
surface elevations. Therefore, the common assumption that the earthquake motion acts in a direction parallel to either 
pair of sides is appropriate. 

Damping. Energy dissipation may occur on account of viscous effects associated with boundary layers on the reservoir 
walls, particularly for boundaries which are rough or contain protrusions: flow separation effects as the fluid oscillates 
past baffles or other obstacles in the reservoir; and free surface effects associated with breaking waves. As already 
indicated, energy dissipation may be accounted for in the complete solution, provided that a suitable damping ratio is 
assumed. The damping ratio may be estimated from an assessment of the energy dissipation mechanisms that are 
predominant. Approaches to estimating hydrodynamic damping due to baffles or perforated bulkheads and wave 
breaking have been indicated by Isaacson and Subbiah (1991). Unless more detailed information is available. a damping 
ratio of 0.005 appears to be reasonable for general application. 

Example  

Using the procedure outlined above, a sample set of calculations has been carried out for a reservoir which is 300 m 
long, 150 m wide, and has a water depth of 10 m. For such a condition the natural periods of the lowest modes for 
longitudinal sloshing are 60.54 s, 20.47 s, and 12.61 s. For a maximum ground acceleration U m  = 0.2g. and a damping 
ratio C = 0.005, the estimates of the maximum elevation are 'rim  = 0.156 m. tlt = 0.064 in and ri ui  = 0.066 in. 
Therefore, the maximum sloshing height should be taken as 0.156 m. The above results confirm that the estimation of 
maximum surface elevation in a large reservoir requires the influence of higher sloshing modes to he taken into account. 
As expected, prediction based on the expression by Housner are 3C7 higher than those for first mode sloshing given he 
Eq. 7. It is of interest to contrast this to the case of the force calculations. The maximum force based on the complete 
solution is 3.64 MN, whereas the maximum force based on first sloshing mode is 3.62 MN. This small difference arises 
because of the relatively large influence of the impulsive mass, and is in significant contrast to the much larger 
differences in free surface elevation predictions. 
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Figure 1. Definition sketch of a 

rectangular reservoir. 
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SUMMARY AND CONCLUSIONS 

The present paper provides an overview of approaches used to estimate the maximum water surface elevation in 
reservoirs due to earthquake-induced sloshing. These correspond to predictions based on the complete closed-form 
solution to the linearized boundary value problem, the corresponding solution for first mode sloshing only, and the early 
solution of Housner. These three approaches are compared. It is shown that the reliable estimation of the maximum 
surface elevation in a large reservoir requires the influence of higher sloshing modes to be taken into account. And, as 
expected, Housner's predictions correspond closely to those based on the closed-form solution for first mode excitation. 
but give predictions which are slightly higher. A brief indication is also provided of various additional factors which may 
require consideration, including the treatment of reservoirs with complex planforms; the influence of the direction of base 
motion; and the estimation of hydrodynamic damping. 
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Figure 2. Dimensionless amplitude of free surface elevation at tank wall 
as a function of da/g for h/a = 1.  = 0.00, ___., c = 0.05, 

=0.10. 
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Figure 3. Comparison of elevations based on Housner's solution and the closed-form solution for first mode 
sloshing. (a) U m ig =0.1 and various h/a values; (b) h/a = 1.0 and various 6,, /g values. 
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Figure 4. Comparison of elevations based on the complete closed-form solution and the first mode solution for 
ti„/g =0.1 and various h/a values. 
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